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ABSTRACT 

In recent years, a considerable amount of research has been aimed at discerning the 

determinants of traffic crashes and those circumstances under which crash risk is increased. 

This is particularly important when considering the potential safety impacts of geometric 

design or transportation policy decisions. For example, research has consistently 

demonstrated that crashes are affected by various factors related to the roadway, the 

surrounding environment, and the involved drivers. This study has two principal goals. The 

first is to understand how driver speed selection varies with respect to traffic and roadway 

geometric characteristics. The second goal is to explore the relationship between traffic 

crashes, operating speeds (i.e., mean speed, 85th percentile speed, speed variance) and other 

pertinent factors (e.g., traffic, roadway, weather). To achieve these goals, the study utilized 

traffic, roadway, weather, and speed data (i.e., automatic traffic recorder, INRIX) for Iowa 

interstates. Simple descriptive statistics are documented to illustrate crash trends on the Iowa 

interstate network during the study period. A series of regression models were estimated to 

investigate relationships between various speed metrics and crash rates with respect to traffic, 

roadway, and weather characteristics. The study suggests that speed measures, such as mean 

speed, 85th percentile speed, and speed variance, are found to correlate with the roadway 

geometry. In addition, higher speed variance is associated with more crashes, while the 

absolute speed of traffic does not necessarily correspond to higher crash occurrences.
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CHAPTER 1.    INTRODUCTION 

Balancing transportation efficiency and traffic safety has long been a crucial issue. 

One policy issue with substantive impacts on both safety and efficiency is the establishment 

of maximum statutory speed limits. Various research studies have indicated that increased 

speed limits are associated with increased crashes. From a policy standpoint, it is critical to 

understand how the frequency and severity of traffic crashes may be influenced by speed 

limits and other roadway and environmental factors. 

In 1974, a national maximum speed limit (NMSL) was introduced in the United 

States, which established a consistent 55 mph limit on all high-speed roadways. Subsequent 

legislation in 1987 allowed states to increase limits up to 65 mph on rural interstates. In 1995, 

states were provided with full autonomy to establish maximum speed limits on all roads 

under their jurisdiction. Figure 1 shows the current maximum posted speed limit map on 

rural interstates for all 50 states and the District of Columbia. In particular, 19 states have 

raised their maximum speed limit to 75 mph or above, with Texas having the highest posted 

speed limit (85 mph) on selected road segments. 

 

Figure 1. Maximum Posted Rural Interstate Speed Limits 
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In Iowa, the most recent speed limit change took place on July 1, 2005, when the 

maximum speed limit was raised from 65 mph to 70 mph on rural interstates. A series of 

subsequent studies evaluated the short-term impacts of the speed limit increases (Souleyrette 

et al., 2009; Souleyrette et al., 2010). The results showed that crashes increased following the 

speed limit change, though this change was not statistically significant at a 95-percent 

confidence level. The researchers suggested that further study is required to understand the 

relationship better, including whether drivers may have adapted to the new speed limit over 

time. 

This study builds upon these initial analyses and leverages the additional crash data 

that are now available, allowing for a comparison of changes in the crash frequency, rate, and 

severity between the periods before and after the speed limit change was introduced. In 

addition, comprehensive analyses are conducted using an integrated database that includes 

traffic volumes, roadway geometry, and weather data, as well as detailed speed information 

from automatic traffic recorders and probe vehicles. The objective of this study is to 

understand the relationship between different speed measures (e.g., mean speed, 85th 

percentile speed, speed variance) and roadway geometric characteristics. The study also 

examines how safety on Iowa interstates is influenced by operating speeds while controlling 

for the effects of other site-specific factors that may affect both speeds and safety. 

This thesis consists of six chapters. Chapter 1 introduces the background and 

objectives of the research problem. A comprehensive literature review shows previous 

studies and their findings of how speed, traffic, weather condition, and roadway geometry 

affect transportation safety in Chapter 2. Chapter 3 provides a detailed description of the 

datasets and the processes of integrating data. The statistical methods utilized in this study 
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and research findings are summarized in Chapter 4 while the results of these analyses are 

detailed in Chapter 5. Finally, Chapter 6 provides a summary and discussion of key findings.  
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CHAPTER 2.    LITERATURE REVIEW 

Numerous prior studies have investigated the impacts of speed limit changes. The 

introduction in 1974 of the national maximum speed limit (NMSL) of 55 mph resulted in 

speed limit reductions on various high-speed facilities. Several research studies tried to 

evaluate the impacts of the NMSL (Enustun, 1974; Borg, 1975; Johnson et al., 1980). A 

study conducted in Indiana found that the NMSL led to a 67% decrease in fatalities, 32% 

decrease in personal injury, and 13% decrease in property damage on rural highways in the 

first half of 1974 when compared to the same period of 1971, 1972, and 1973 (Borg, 1975). 

Similar reductions were also observed in Michigan over the first half of 1974 (Enustun, 

1974). 

When the NMSL was relaxed in 1987 and 1988, some states increased their 

maximum speed limit on rural interstates from 55 mph to 65 mph. One study in Washington 

used crash and traffic data between 1970 and 1997 to investigate the impacts of the increased 

speed limit on rural freeways. The results suggest that the increased speed limit was 

associated with an increase of 26.4 fatalities per year (Ossiander et al., 2002). Some 

additional research compared traffic safety between states that raised their speed limit to 65 

mph and states that retained the speed limit of 55 mph. A national analysis found a 15 

percent increase in fatalities on rural interstates in 38 states that set higher speed limits in 

1987 than the expected fatalities if the states had retained the 55 mph speed limit, while 

states that retained the 55 mph speed limit experienced 6 percent fewer fatalities than 

expected (Baum et al., 1989). The study was extended two years later and it was found that 

the fatality risk on rural interstates had increased 29% for states that increased the speed limit 

and had decreased 12% for states that retained 55 mph speed limit when adjusting the vehicle 
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miles traveled and vehicle occupancy rates (Baum et al., 1991). A before-after study was 

performed for Iowa and surrounding Midwestern states to study the consequence of raising 

speed limits to 65 mph for all road types. This study used fatality data for eight years 

preceding the speed limit change (1988-1995) and eight years after (1997-2004). It was 

found that collectively the rate of fatalities per 100 million vehicle miles traveled rose by 10 

percent in states that increased the speed limit, and decreased by 7 percent in states that did 

not raise their speed limits (Falb, 2006). 

Other research on the impacts of speed limit increases to 65 mph found similar 

results. Research from Virginia analyzed data from two years before and two years after the 

1987 speed limit change. They asserted that rural interstate fatalities increased by 42.2% after 

the speed limit increase (Lynn & Jernigan, 1992). Another study conducted in Illinois used 

data from five years before and four years after the speed limit increase. The researchers 

estimated that the increased speed limit resulted in 345 additional crashes, 15 more deaths, 

and 150 more injuries per month on rural Illinois highways. This negative impact was not 

only apparent on 65 mph rural road segments, but also on 55 mph rural highways (with a 

smaller impact). The results implied that speed spillover effects may have occurred, wherein 

the higher speeds on the 65-mph roadways induced increases on other facilities where the 

limits had not been increased (Rock, 1995). 

A study in Michigan took a more in-depth look at the impact of raising speed limits to 

65 mph on crash severity on limited access freeways. The study indicated the speed limit 

change led to a 19.2% increase in fatalities, 39.8% increase in serious injuries, 25.4% 

increase in moderate injuries, 16.1% increase in PDO crashes, and no significant change in 

minor injuries. The fatalities on limited access freeways with 55 mph speed limit also 
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increased by 38.4%, suggesting further evidence of speed spillover effects (Wagenaar et al., 

1990). Streff and Schultz performed a similar study for Michigan rural limited-access 

highways in 1990. The results of the monthly time-series intervention analyses estimated that 

the rates of fatality, A-level injuries, and B-level injuries were raised by 28.4% (31 additional 

deaths), 38.8% (420 additional injuries), and 24.0% (491 additional injuries) respectively 

over the 25-month study period, resulting in a total societal cost of $98 million (Streff & 

Schultz, 1990). 

An Iowa study explored the safety impact of the increased 65 mph limit on rural 

interstates from 1981 to 1991. Researchers claimed that higher speed limits led to a higher 

fatality rate as the speed limit change was associated with about 20% more fatal crashes 

statewide, though major injury crashes did not change significantly (Ledolter & Kwai, 1994). 

The study was expanded two years later, using the same years of data but more selective 

sample locations, comprising 18 locations including rural interstates, rural primary roads, 

rural secondary roads, and urban interstates. The same 20% increase in fatal crashes was seen 

using the same years of data. Additionally, it was found that adverse effects of increasing 

speed limit to 65 mph was most apparent on rural interstates, causing a 57% increase in the 

number of fatal crashes on this road type, while the effect was negligible on urban interstates, 

as the new speed limit was not implemented on urban interstates. Consistent results were 

found on the number of major-injury crashes, suggesting that this type of crash was 

insensitive to the speed limit increase (Ledolter & Kwai, 1996). Additional research on the 

65 mph speed limit increase on rural Iowa interstate highways used fatal crash data from 

1980 to 1993. The predictions from a dynamic model showed an average increase of four 
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fatal crashes per quarter on rural Iowa interstate highways due to the increase in speed limit 

(Raju et al., 1998). 

Research also unveiled the relationship between speed limit, operating speed change, 

and traffic safety. One study used fatal crash and speed data for five years preceding and one 

year following the increase in the national maximum speed limit to 65 mph for all states. 

Results showed that increasing the speed limit caused 48% more speeders and 22% more 

fatal crashes on rural interstates. Even in states that retained lower speed limits, the fatal 

crashes still increased by 10% and 13% for rural interstates and other 55 mph highways 

respectively, which was explained by the increasing number of speeders coinciding with the 

change in speed limit. Although it seemed that negative impacts were found for increasing 

the speed limit, the authors believed that increasing speed limits on rural interstates may 

benefit safety by diverting some speeders to highways that better accommodated their desired 

speed, since the non-compliance rate with the 55 mph speed limit was high (McKnight & 

Klein, 1990). 

Another study produced different findings, and claimed that the proportion of people 

driving at high speeds were considerably lower in states with 55 mph speed limit than in 

states with 65 mph speed limit (Freedman & Williams, 1992). Meanwhile, a study from 

Washington evaluated the impacts of raising speed limits to 65 mph on high-speed roads. 

According to the study, a 3-mph increase in average speed was expected for a 10-mph speed 

limit increase. Also, the raised speed limit led to a 3% increase in crash rate and 24% 

increase in the probability of an occupant being fatally injured in a crash (Kockelman et al., 

2006). A later study collected rural interstate speed and crash data from 61 stations in 

California, 51 stations in Oregon, and 6 stations in Washington. It was concluded that a 1-
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mph increase in speed limit was associated with a 0.3 to 0.4 mph increase in travel speed, and 

increasing the speed limit by 10 mph resulted in 9-15% more crashes and 34-60% more fatal 

crashes (Van Benthem, 2015). 

A study in Virginia utilized both urban and rural interstate speed data and fatal crash 

data from 1986 to 1989 to assess the effects of increasing speed limits from 55 mph to 65 

mph on rural interstates. A significant positive relationship was found between average speed 

and the annual number of fatalities on Virginia’s rural interstates. A 1-mph increase in the 

annual average speed corresponded to about 2-6 deaths. Average and 85th-percentile speeds, 

fatal crashes, and fatalities all increased on Virginia’s rural interstates after raising the speed 

limit. Negligible impacts were observed on urban interstates (Jernigan & Lynn, 1989). 

Research from Illinois examined the safety impact of the 65 mph speed limit on rural 

interstate highways using speed and crash data for 15 rural interstate highway segments, and 

data were obtained for 52 months before and 15 months after the speed limit increase. 

Results illustrated that the 85th-percentile speed for cars was 4 mph higher than before, but 

there was no change in the rate of all crashes except for a statistically non-significant 

increase (18.5%)  in the rate for fatal and injury crashes (Pfefer et al., 1991). 

Other research indicated positive effects of increasing the speed limit to 65 mph. One 

study assessed the 65 mph speed limit for all states. For the states that increased their speed 

limit, the growth of VMT for rural interstate highways was 1.73 times greater than the 

overall VMT growth rate, implying that interstates took traffic away from the more 

dangerous highway types. When aggregating all states that raised their speed limits and all 

that did not, the states with increased speed limits experienced a 3.62% greater decrease in 

fatality rates from 1986 to 1988 than states with the unchanged speed limit (Lave & Elias, 
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1997). Another study calculated the fatality rate per VMT from January 1976 to December 

1990 for each state and fitted a linear regression while controlling state-specific 

characteristics such as percent unemployment and seat belt use. The results demonstrated that 

the states that raised the speed limit to 65 mph experienced 3.4% to 5.1% drop in fatality 

rates compared to the states that remained the same speed limit (Lave & Elias, 1994). 

Mixed results were found in several studies regarding raising the speed limit from 55 

mph to 65 mph. A state-by-state analysis was done for rural highway fatalities using the 

Fatality Analysis Reporting System (FARS) data from January 1976 to November 1988. 

Researchers asserted that the new 65 mph speed limit had quite disparate effects on rural 

highway fatalities, and the speed change affected both rural interstates and rural non-

interstate highways. Among all states, some experienced increasing rural interstate fatalities, 

while others saw decreases or had no detectable effect. However, the number of states 

observing increased fatalities exceeded the number of states experiencing reduced fatalities, 

leading to a median effect of about 15% more fatalities. The researchers speculated that the 

new 65 mph speed limit may contribute to traffic diversion as well as speed spillover effects 

on rural non-interstates. The median effects of the new speed limit on rural non-interstate 

fatalities was an approximately 5% increase (Garber & Graham, 1990). 

Preliminary evaluation of the increased speed limit on rural interstates was conducted 

in Illinois by comparing fatal crashes and personal injury crashes as proportions of total 

crashes for the before (May 1982 through April 1987) and after periods (May 1987 through 

April 1988). No significant differences were found. From this, the researcher concluded that 

the severity of crashes on Illinois rural interstates did not worsen and no noticeable adverse 

effects because of the speed limit increase were observed, at least for the first year after the 
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increase (Sidhu, 1990). In the same year, another study in Alabama yielded similar results. 

The study assessed the impact of the 65 mph speed limit on the entire Alabama roadway 

system using two years of data from before and one year after the change. They pointed out 

that the proportion of PDO to injury to fatal crashes remained the same, meaning there was 

no evident change in crash severity, although the crash frequency was found to be increased 

by 18.88% on rural interstates in the first 12-month period after the change (Brown et al., 

1990). 

Some studies observed different effects of the speed limit increase on different road 

types. An Ohio study used 36 months of crash data both before and after the speed limit 

increase, and claimed that the fatal crash rate did not significantly change on rural interstate 

highways with 65 mph speed limits and non-interstate highways with 55 mph speed limits. 

However, the injury and PDO crash rates increased by 16% and 10% respectively on 65 mph 

rural interstates, while the injury and PDO crash rates decreased by 5% and 3% respectively 

on 55 mph rural interstates. Additionally, crash severity decreased on 55 mph non-interstate 

highways, which researchers believed to be associated with the effects of a recent seat belt 

law, speed enforcement, and geometric and operational improvements (Prahlad et al., 1992). 

According to a study that examined the impact of the increased speed limit on rural 

interstates of 48 states excluding the District of Columbia, Delaware, and Alaska, raising the 

speed limit resulted in a significant increase in fatalities nationwide. However, this increase 

decayed after about one year. Larger states, such as Texas, California, Florida, and Illinois 

were insensitive to the speed limit increase, while smaller states reacted to the speed limit 

increase more dramatically (Chang et al., 1993). 
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Since the repeal of NMSL, the speed limit setting authority was fully returned to the 

individual states, and many states decided to further increase their speed limit to 70 mph. 

Studies in several states have observed the outcomes of increasing the posted speed limit 

from 65 to 70 miles per hour. A study in Iowa found increases in fatal crashes and in serious 

nighttime crashes over a 2.5 year period after the change, but the increases were not 

statistically significant at the 95% confidence level. (Souleyrette et al., 2009). A study in 

Florida evaluated drivers’ compliance to posted speed limits and studied the average speeds 

at locations where the speed limit increase was applied. At sites where the increase was 

applied, the average speed increased by 5 miles per hour, reaching 72 miles per hour over a 6 

year period. Researchers argued that speed variation might cause the majority of crashes 

analyzed in this study (Muchuruza & Mussa, 2004). 

Studies in Indiana also evaluated the increase in the speed limit from 65 to 70 miles 

per hour and the outcomes of that change. One of the studies examined drivers’ perceptions 

of their driving speed after the state applied the speed limit increase on its rural interstates. 

The study found that socioeconomic variables, such as age, gender, and income, correlate 

with driver speed choice. It was also found that drivers do not believe that driving above the 

speed limit significantly threatens their safety (Mannering, 2007).  Another study performed 

in Indiana evaluated the effects of the speed limit increase on crash severity. Researchers 

found that the change did not have a statistically-significant effect on the severity of crashes 

for interstate highways; for some non-interstate highways, a positive correlation was 

observed between higher speed limits and the severity of crashes (Malyshkina & Mannering, 

2007). A study in the state estimated the crash-injury severity on interstate highways after the 

speed limit increase and did not find a significant correlation between them. However, the 
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crash data showed that higher speed limits were associated with a greater likelihood of 

injury, fatality, or both on some non-interstate highways (Malyshkina & Mannering, 2008). 

Since the state of Michigan increased its speed limit on freeways in 1997 from 65 to 

70 miles per hour, several studies have examined the effects of that change. One of them 

evaluated the effects of increasing the speed limit from 65 to 70 miles per hour for passenger 

cars. The study found that fatal crashes increased by 5% and total crashes increased by 

10.5% after the change. It was observed that A-crashes decreased by 9% after the increase in 

speed limit and a higher percentage of statewide crashes occurred on freeways after 1997. 

The study also found a decrease in severe truck crashes, but found an increase in the total 

amount of truck crashes after the speed limit change (Taylor, 2000). Another study in 

Michigan studied the results of the speed limit change on crash frequency. The study 

observed a 16.4% increase in crashes over one month after the speed limit change at sites 

where the speed limit increased. Crashes decreased by 2.4% over the same period in sites 

where the speed limit did not increase (Taylor & Maleck, 1996). A study in the same state 

observed drivers’ speeds after the change. It did not find meaningful speed changes for sites 

where the speed limit increase was not applied and did not observe a spillover effect of 

increased speeds for locations near those sites. The 50th and 85th percentile speeds 

respectively increased by 1 mph and 0.8 mph for sites where the change was applied 

(Binkowski et al., 1998). 

A study in Alabama evaluated vehicle crash frequency for rural interstate highways 

after the speed limit increase from 65 to 70 miles per hour and found significant increases in 

the number of fatal crashes. However, state and federal highways did not have significant 

changes (Bartle et al., 2003). A study conducted in Iowa evaluated the effects of the speed 
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limit increase from 65 to 70 miles per hour on crash frequency in the state. It found a 52% 

increase in nighttime fatal crashes and a 25% increase in severe cross median crashes. The 

increases were more than normal variation, but were not statistically significant at 90% 

confidence level. The research found a 25% increase in the total crashes in the state after the 

speed limit increase, which was significant at the 90% confidence level (Souleyrette et al., 

2010). 

Instead of focusing on the impact of one speed limit change, additional studies 

considered several speed limit changes over a longer period of time. One national study used 

a time series model to investigate the impacts of two speed limit increases on the Interstate 

network, one in 1987 when some states increased speed limit to 65 mph, and another in 1996 

when some states implemented speed limits over 65 mph. The numbers of fatal crashes for 

each month from January 1975 to December 1998 were collected. The results indicated that a 

significant increase in fatal crashes on rural interstates was found in 19 of 40 states in the 

first speed limit increase in 1987, while in the second speed limit increase in 1996, 10 out of 

36 states witnessed a significant increase in fatal crashes on rural interstates (Balkin & Ord, 

2001). 

Research in California studied speed limit changes on state highway segments. Three 

groups that remained the same speed limits and increased speed limits were identified: 

remained at 55mph, increased from 55 to65 mph, and increased from 65 to 70 mph. It was 

found that for groups that experienced a speed limit increase, there was a significant increase 

in fatal collisions, although the 65-70 mph group had a level of significance of less than 10% 

(Haselton et al., 2002). A study in Utah analyzed crash data on rural/urban interstates, rural 

non-interstates, and high-speed non-interstates between 1992 and 1999. Within these 
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roadway categories, various speed limit changes were experienced, such as 55-60 mph, 65-65 

mph, 55-65 mph, 65-70 mph, and 65-75 mph. Researchers asserted that the total crash rates 

on urban interstates where the speed limit was raised from 60 to 65 mph and fatal crash rates 

on high-speed rural non-interstates where speed limit increased from 60 to 65 mph had 

increased sharply. Meanwhile, the study observed that other statistics remained stable after 

the speed limit change, such as the total, fatal, and injury crash rates on rural interstates; fatal 

and injury crash rates on urban interstates, and total and injury crash rates on high-speed non-

interstate (Vernon et al., 2004). Another study included 41 states that at least had 10 billion 

VMT in each year in the analysis. All roadway types were included in the analysis, and the 

study period was between 1993 and 2013, during which some states increased speed limits 

from 55 to 65 mph or from 65 to 70 mph. The study results revealed that the fatality rate 

generally decreased over the study period; however, increasing the maximum speed limit was 

associated with higher fatality rates. On all roads, a 1-mph increase in the maximum speed 

limit resulted in a 0.9% increase in the fatality rate, while this positive relationship was 

almost doubled to 1.6% on interstates and freeways (Farmer, 2016). 

Apart from the impacts of the speed limit, traffic and roadway geometry also play 

significant roles in traffic safety. Several prior studies have provided observations in regard 

to these factors. Preliminary conclusion was made that the number of crashes had been 

observed to increase with traffic volume, while crash rates tend to decrease as traffic volumes 

increase. Further research was warranted to study the relationship extensively 

(Duivenvoorden, 2010). Crash odds have been found to decrease as the shoulder width 

increases (Gross et al, 2009). A recent study examined several risk factors, including 

highway traffic and roadway design collectively. It was concluded that higher traffic volume 
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consistently led to higher crash frequencies. As for geometry characteristics, a 1% increase in 

the left shoulder width on interstates is related to a 1.72% decrease in fatal crashes and a 

2.97% decrease in non-fatal crashes, while crash frequencies were less sensitive to the right 

shoulder width.  Increasing the median width by 1% reduces fatal crashes by 0.50% and non-

fatal crashes by 0.65% (Chen et al., 2019). Researchers conducted a study on the 

effectiveness of a cable median barrier system on an Oregon highway. Although more 

crashes were observed on the cable median barrier roadway sections, the severity of crashes 

decreased significantly (Burns & Bell, 2016). A more recent study in Iowa evaluated the 

performance of median cable barriers and concluded that the countermeasure decreased K, A, 

and B crashes while increasing C and PDO crashes. The reason was that the median cable 

barrier system might effectively convert more severe crashes to less severe crashes. It was 

also found that the frequencies in fatal, injury, and PDO crashes decreased with a wider 

median width (Savolainen et al., 2018). 

Adverse weather has always been associated with increases in crashes, and many 

studies have evaluated the impacts of adverse weather on traffic safety. Abdel-Aty et al. 

(2011) analyzed the fatal crash data in the US from 2000 to 2007 using FARS and reported 

that there were 4,972 fatal crashes during snow events, and 31,514 fatal crashes during all 

inclement weather including rain, snow, and fog/smoke. Adverse weather reduced visibility 

and caused slippery roadway pavement surfaces, which in turn led to increased accident 

risks. Khattak and Knapp (2001) considered crash, weather, and roadway geometry 

information on selected Iowa interstate segments to compare crashes during snow events 

with crashes that occurred during non-snow events. They reported that the winter snow event 

injury and non-injury crash rates were significantly higher than the equivalent winter non-
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snow event injury and non-injury crash rates. However, the crash severity was lower during 

snow events, which might be caused by slower speeds and more cautious driving during a 

snow event. Another study showed that the accident risk increased by four times on slushy 

road conditions and two times on slippery and very slippery road conditions (Malin et al., 

2019). Similar results were also demonstrated in a study conducted by Yu et al. (2015), 

where increased crash rates in large precipitation (above 0.02 in/h) conditions were observed. 

Although considerable effort has been extended to make highway travel safer, 

understanding how travel speed and speed variation affects crash rates and crash severity can 

help further improve roadway safety. A previous study reported that a driver would have a 

higher risk of experiencing a crash if the difference between the vehicle speed and the 

average traffic speed increases (Solomon, 1964). Lave (1985) concluded that no evident 

relationship was observed between fatality rate and average speed, but speed variance was 

highly correlated with the fatality rate. He claimed that the safest driving speed was the 

median speed, and deviations from this speed in either direction would increase the crash 

risk, meaning both slower and faster vehicles were more likely to be involved in crashes. 

Later, Garber and Gadiraju (1989) studied the factors that caused the increased speed 

variance and the relationship between speed variance and crash rates. They reported that the 

minimum speed variance was observed when the posted speed limit was 5 to 10 mph lower 

than the design speed, and the speed variance increased with the increased differential 

between design speed and posted speed limit. They explained that drivers chose their driving 

speed based on the roadway geometric characteristics, and higher driving speed was 

anticipated on improved roadway geometry regardless of the posted speed limit. Also, similar 

to the previous findings, they argued that crash rates increased with higher speed variance 
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and no significant relationship was found between crash rates and average speed. Oh et al. 

(2005) also identified that the standard deviation of speed was the most significant variable 

when estimating the likelihood of crashes. A research conducted by Abdel-Aty et al. (2004) 

determined that the average lane occupancy at the upstream station and variation of speed 

downstream were the most significant variables in predicting the likelihood of crash 

occurrences. 

Contrary results have been seen in other studies. Another study in Australia 

quantified the relationship between free traveling speed and fatal crash risk using a case 

control study. They concluded that vehicles traveling 10 km/h above the average speed 

doubled the risk of being involved in a fatal crash and this risk increased to six times greater 

when the vehicle speed was 20 km/h higher than average speed. The results indicated that 

slower vehicles did not have significantly higher risks. The researchers suggested that 

reducing traffic speed was more effective in reducing crash frequency than reducing speed 

differences (Kloeden et al., 2001). A year later, a study conducted by the same researchers 

asserted similar findings that crash frequency was correlated with vehicle speed rather than 

speed variations and other factors. They indicated that a small reduction in absolute traveling 

speed could lead to decreased fatal crash frequency (Kloeden et al., 2002). 

Overall, there remains some ambiguity as to the relationship between crashes, travel 

speed, and speed variance. Some studies have found that speed variance had greater impacts 

on crash risk than average speed while others report that crashes were affected more by mean 

speed than by speed variance. Ultimately, traffic crashes occur due to a complex combination 

of factors including traffic flow, roadway condition and geometry, human behavior, etc. This 
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study aims to provide further research in support of continuing policy debates regarding 

maximum statutory speed limits. 
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CHAPTER 3.    DATA COLLECTION 

This study involves an investigation of the safety performance of Iowa interstates, 

with an emphasis on changes that have occurred since the most recent speed limit increase 

from 65 to 70 mph, which occurred in 2005. These analyses rely on information from several 

different datasets, outlined in the following sections. 

 

3.1 Roadway Information 

The interstate roadway network used in the Iowa-specific analysis was obtained from 

the Iowa DOT online Geographic Information Management System (GIMS) portal, which 

provides traffic control and geometric characteristics of state-maintained roadways. A unique 

identifier, known as “MSLINK”, is assigned for each segment. 

In order to evaluate the potential impacts of the speed limit policy on Iowa highways, 

various roadway geometric and traffic characteristics were extracted from the GIMS 

database. To obtain the Iowa interstate segments, the ROAD_INFO_2015 file, which had the 

most current data at the time of study, was imported into ArcMap. Several fields such as 

“INTERSTATE” and “FUNCTION” were utilized to identify the interstate segments. The 

“INTERSTATE” field indicates whether or not a road system is classified as an interstate; 

however, solely relying on this attribute would result in additional unwanted road segments 

such as ramps. Therefore, another attribute was introduced to filtering only mainline 

segments, which was the “FUNCTION” field. This field distinguishes mainline and non-

mainline road sections, the following values were selected by applying filter under attribute 

“FUNCTION”: mainline normal (00), mainline - 1st innerleg (09), mainline - 2nd innerleg 

(10), mainline - 3rd innerleg (11), mainline - 4th innerleg (12), mainline - 5th innerleg (13), 
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mainline - 6th innerleg (14), mainline - 7th innerleg (22), mainline - 8th innerleg (23), 

mainline - 9th innerleg (24), mainline - 10th innerleg (25). After this process, there were still 

some redundant segments. They were then removed manually using ArcMap’s Editing tool. 

Eventually a total of 4164 interstate segments were selected. Furthermore, because the GIMS 

database was updated annually, in order to include more years of data, the information 

collected was disaggregated by year. “MSLINK” was used as an identifier to link roadway 

and traffic characteristics. The information obtained from the GIMS database for this study 

includes the following: 

• Location of the roadway segments 

• Segment length 

• Data year 

• Indicator for urban/rural area 

• Median type, presence of median barrier, and median width  

• Number of lanes, lane type, and acceleration/deceleration lane 

• Annual average daily traffic (AADT)  

• Shoulder width 

• Presence of rumble strip 

• Speed limit 

 It should be noted that some variables of interest were not provided by GIMS 

directly, and some manipulations were made to obtain the information. For example, the 

indicator for the urban/rural area was derived from the “URBANAREA” attribute, which 

identifies whether the road segment is within a specific urban area assigned by the FHWA. 

Segments with predefined codes were treated as urban segments and were given “1” as an 
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indicator for the urban area, while segments with code “9999” were given “0”, indicating its 

presence in a rural area. The presence of the median barrier was identified by median type 

where medians were categorized in different groups. Segments with acceleration/deceleration 

lanes were identified by lane type attribute where the type of each lane from the left side of 

the road segment to the right side is specified. Since the information was disaggregated by 

year, new construction or resurfacing of the roadway might have taken place throughout the 

years. A new “MSLINK” would have been assigned to the roadway segment where works 

had been done. Thus, 208 out of 4164 segments had missing values in 2008, which was the 

start of the study period and the year that had the largest number of missing values. To verify 

whether the road segments had previously existed or completely new constructed, QA/QC 

was conducted for those segments using Google street view. Eventually, it was found that 

there were no completely new interstate segments constructed. Therefore, in order to add 

those missing values, ArcMap was used to locate the nearest segment on either side of the 

null segments, and then the values were filled in by taking the average values of the data 

from the two adjacent segments. The same process was repeated for all nine years of data. 

Additionally, there were a large number of short segments that had lengths of less 

than 0.1 miles. To eliminate potential bias that the short segments might create when 

developing crash prediction models, segments shorter than 0.095 miles (i.e., those that do not 

round up to 0.1 miles) were merged in with the nearest adjacent segments. Given that two 

segments that were being merged might have different characteristics, in order to better 

represent the characteristics of newly combined segments, a weighted average by length was 

taken for all corresponding variables. By merging the short segments (<0.095 miles), the 

number of interstate segments was reduced from 4164 to 2578. 
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 Summary statistics for these interstate segments are given in Table 1. Note that all the 

low-speed interstate roadways with speed limits of 55 mph and 60 mph are in urban areas. It 

was found that only 22% of interstate miles are within urban areas while the average annual 

VMT on urban interstate accounts for 38% of the total VMT on all interstate. 

Table 1. Summary Statistics for Average Interstate Bi-directional Mileage and Vehicle Miles 

Traveled, 2008 to 2016 

Interstate Type Mileage (bi-directional) Vehicle Miles Traveled (100 M) 

55mph 55 5.129 

60 mph 32 4.083 

65 mph (urban) 190 15.735 

65 mph (rural) 34 1.365 

70 mph (urban) 65 4.043 

70 mph (rural) 1187 45.272 

 

 

3.2 Crash Information 

Another essential database used in this study was the Iowa statewide crash database 

maintained by the Iowa DOT, which includes information regarding crashes that occurred on 

the Iowa roadway network, such as vehicle characteristics, driver characteristics, crash 

environment, roadway characteristics, injury/protective devices, etc. For the purpose of this 

study, crash information was collected from 2008 to 2016. Aggregate data for years prior to 

2008 were obtained from a prior short-term evaluation of the 2005 speed limit increases 

(Souleyrette et al., 2009; Souleyrette & Cook, 2010). 

The variables of interest in the crash database included crash keys, crash location, 

type of roadway/ramp identifier, crash severity, weather/road surface condition, year of 

crash, manner of collision, and first harmful event. In order to obtain crashes that occurred on 

a mainline interstate, the interstate network layer derived previously and crash layer were 
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both added into ArcMap. A 100-foot buffer on both sides was created along the interstate 

network to include only crashes that were within the buffer. However, this method could 

have possibly included some crashes that occurred on interstate ramp segments as well. To 

remove ramp crashes, the ramp identifier in the crash database was used. The crash severities 

for individual crashes were also collected to study the severity-specific crash rate. 

 

3.3 Weather Data 

Weather data was requested from the Iowa Environmental Mesonet (IEM). IEM 

provides access to the raw observations from the National Weather Service Cooperative 

Observer Program (NWS COOP) network, and daily reports could be downloaded. In this 

dataset, there are 115 stations spread across Iowa, from which data were obtained between 

January 2008 and December 2016. The variables requested include latitude and longitude 

coordinates, daily high temperature, daily low temperature, daily precipitation, and daily 

snowfall.   

After downloading the weather data, a data cleaning process was performed by 

eliminating the stations that had zero or unusual low values for the yearly total. If a station 

had a value of zero or a value that was three standard deviations away from the average of all 

observed stations in any one of the variables of interest, that value was counted as an outlier 

and removed from the dataset. Yearly average values for temperature, precipitation, and 

snowfall for each station were then calculated, and the data was imported into ArcMap. Since 

the weather stations were point data and can only represent weather condition in its 

surrounding region, the stations that were within 20 miles from the interstate network were 

first selected to ensure better representation of the weather characteristics, then a 25-mile 

buffer was created around every weather station, which established total coverage of the 
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interstate network. The weather stations with an interstate within the 25-mile buffer were 

joined to the nearest interstate segments. Because some weather stations were close to each 

other and the 25-mile buffer might have created some overlap, when integrating the data into 

the interstate segments, an average was taken for overlapping stations. Among nine years of 

data, different weather stations were eliminated for every year due to the missing records. 

Hence, the joining process was repeated for nine years of weather data. Figure 2 illustrates 

the selected weather stations and buffers for 2016. 

 

Figure 2. Selected Weather Stations and Buffers along Iowa Interstate, 2016 

 

3.4 Automatic Traffic Recorder (ATR) Data 

Iowa Department of Transportation collects vehicle speed data using automatic traffic 

recorder (ATR) equipment at permanent sites across Iowa’s highway system. Speed reports 
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for Iowa highways were generated on a quarterly basis. The quarterly speed reports for Iowa 

were requested from Iowa DOT from 2013 to 2016, however, three quarterly reports were 

missing during this four-year period, which were second quarter in 2014, second and third 

quarters in 2015. Forty ATR locations are listed on the reports where ten of them are on 

interstates, and seven of them are on rural interstates. The estimated locations of the interstate 

ATR stations were mapped out manually in ArcMap according to the location description 

provided along with the reports. Figure 3 shows the Iowa interstate network with the ATR 

stations. 

 

Figure 3. ATR Stations on Iowa Interstates. 

Since the quarterly speed reports only recorded the count of vehicles that fell into 

each speed ranges, it was necessary to apply some techniques to estimate the average speeds 
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as well as percentile speeds. To estimate average speed, a mid-point was applied to each 

speed ranges. It should be noted that for speed at 40 mph and below and at 86 mph and 

above, mid-points were not applicable. As each speed range increments by five, 2.5 was 

deducted from the higher speed boundary or added to the lower speed boundary thus 37.5 

mph and 87.5 mph were used as the mid points of these speed ranges respectively. The 

number of vehicles operated under these two speed ranges were generally low; therefore it 

should not significantly alter the average speed estimation. The average speeds were then 

calculated by multiplying the count of vehicles in each speed ranges by the corresponding 

mid points, adding up all the products and divide the sum by the total number of vehicles. In 

terms of estimating 85th percentile speed, the percentage of exceeding the lower bound of all 

speed ranges were calculated and logical functions were applied to locate which speed range 

contained the 85th percentile speed. The proportion was then taken to estimate the 85th 

percentile speed. 

 

3.5 INRIX Data 

Conventionally, freeway traffic data are collected through fixed location detectors by 

state DOTs and transportation agencies. In recent years, though, several companies have 

started to collect traffic data by using probe vehicle technology. The data is obtained through 

the collection of vehicle position data from fleet navigation services, smartphone apps, and 

other sources. The raw vehicle position data is aggregated to average speeds on predefined 

segments; that data is sold to transportation agencies and others. INRIX is one of the leading 

providers of this type of data. Compared to traditional fixed-location sensors, INRIX probe 

data provide more comprehensive coverage of roadway systems and do not require costs for 

sensor deployment and maintenance. 
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INRIX provides speed data at a one-minute reporting interval. There are two segment 

formats, which are TMC and XD segments. Traffic Message Channel (TMC) segmentation is 

defined by an industry consortium. On controlled-access highways, TMC segments generally 

span distances between interchanges, which can be several miles long. There are often many 

shorter segments as well, particularly in sections with complex interchange geometry. INRIX 

develops the XD segmentation scheme. The segments are more consistent in length, with 

mostly 1- to 1.5-mile long segments. In this study, TMC data were used because of the 

availability of more years of data. INRIX provides both real-time data and historical data. 

Generally, INRIX has excellent coverage of interstate highways and was able to collect real-

time data on the entire interstate system in Iowa. INRIX TMC real-time data were acquired 

for Iowa interstates from 2013 to 2016. The quality of the data was first evaluated by 

extracting and analyzing one month of raw data (July 2016) for one segment from each type 

of interstate segments, which were urban 55-mph (TMC: 118+04661), urban 60-mph (TMC: 

118+04643), urban 65-mph (TMC: 118+04644), urban 70-mph (TMC: 118+04859), rural 65-

mph (TMC: 118+05030), and rural 70-mph (TMC: 118+04815). Table 2 summarizes the 

one- month raw data on different types of sample interstate segments. 

Table 2. Summary Statistics of Sample INRIX Operational Speed for One Month (July 2016) 

  Min Max Mean Std. Dev. Percentage Below Speed Limit (%) 

Urban 55 mph 10 75 58.65 3.79 6 

Urban 60 mph 13 75 60.47 3.64 42 

Urban 65 mph 7 75 61.26 3.99 82 

Urban 70 mph 5 75 67.39 3.7 75 

Rural 65 mph 43 75 66.72 2.55 16 

Rural 70 mph 37 75 67.28 2.41 83 
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According to the data, the maximum speed was capped at 75 mph, and the standard 

deviation of the raw speed data was suspected of being higher in urban areas than rural areas. 

The percentages of one-minute raw speeds that were below the speed limit over the one 

month period were high, especially on urban 65-mph, urban 70-mph, and rural 70-mph 

segments, which were also reflected on the much lower mean speed than the actual speed 

limits. One reason might be that the vast majority of INRIX data are collected from the fleet 

and commercial vehicles which are more consistent and reliable in nature as these vehicles 

travel the same routes on a regular basis (Travers, 2010). Although only one sample segment 

was selected from each type of interstate, the large proportion of the operating speeds that 

were below the speed limit indicates that the overall speed data was potentially skewed by 

freight vehicles, which generally operate at or below the speed limit on high-speed rural 

interstates. This likely reflects the sourcing of the raw data from navigation services used by 

the trucking industry and other fleet operators.  

Additional investigation was performed to assess the upper bound of speeds from 

INRIX data. Five segments were selected, all rural interstates with a speed limit of 70 mph: 

one from I-29 (TMC: 118-04967), two from I-80 (TMC: 118+04747 and 118+04815), one 

from I-35 (TMC: 118-04843), and one from I-380 (TMC: 118N04932). These specific 

segments were chosen because they are relatively straight and far away from an urban area. 

Figure 4 indicates the locations of the selected segments.  
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Figure 4. Selected 70 mph Rural Interstate Segments 

To begin the investigation, five probability density functions were plotted for the 

selected 70 mph segments to determine whether the speed distribution stay relatively stable 

over the course of a month (July 2016).  
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Figure 5. Probability Density Function Plots for One Month 

The graphs shown in Figure 5 indicate that the speed with the highest frequency falls 

between 62 mph to 65 mph. The speed characteristics are generally consistent between days 

of the month. However, traffic patterns typically vary between weekdays and weekends 

because of the greater proportion of recreational traffic on weekends (Pigman, Rolands, & 

Donald, 1978). Thus, filters were applied to the raw data to exclude weekends and holidays. 

Speed profiles also vary by time of day. To study this, modified boxplots were created for the 

selected segments to visualize and understand the characteristics of the speed data using the 

filtered raw data. The boxplots, shown in Figure 14, were modified to show minimum, 15th 
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percentile, 50th percentile, 85th percentile, and maximum speeds. The red horizontal line 

indicates the speed limit, which is 70 mph.  

 

Figure 6. Modified Box Plots by Time of Day 

As shown in Figure 6, the speeds during the overnight periods (9 p.m. to 5 a.m.) 

tended to be lower than other times of the day. Although the composition of the raw data is 

unknown, it seems likely that lower overnight speeds could be caused by a higher proportion 

of trucks during that time period. A previous study also claimed that the speed bias was 

higher during the overnight period compared to other times of a day (Sharma et al. 2017). To 

better represent typical speed characteristics of interstate segments, it was decided to select 

data only on weekdays from 6 a.m. to 8 p.m. Monthly average values of percentile speeds, 

average speed, standard deviation and variance of speed for all interstate TMC segments 

were obtained from 2013 to 2016. Mean speeds were calculated per month by segment, by 
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simply averaging all available 1-minute speed records for that segment within each month. 

However, standard methods of calculating percentile speed and standard deviation of speed 

were not feasible due to the format of INRIX data (one-minute average speed on a segment). 

The one-minute interval average speed for the segment now replaces the individual vehicle 

speed. For each month, the 85th percentile speed was calculated for the sample of one-minute 

average speed measurements for each segment. The speeds were ordered from smallest to 

highest, and 85th percentile rank was calculated using Equation 1. 

𝑅𝑎𝑛𝑘85 =
85

100
∗ 𝑛 + 0.5        (1) 

The integer calculated in Equation 1 was used to locate the data. If the number was a whole 

number, the corresponding data point was the 85th percentile speed. If the number was a 

decimal, the data points below and above the number were selected, and Equation 2 was 

applied to calculate the 85th percentile speed. 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒85 = (1 − 𝑑) ∗ 𝑋𝑏𝑒𝑙𝑜𝑤 + 𝑑 ∗ 𝑋𝑎𝑏𝑜𝑣𝑒     (2) 

Where d is the decimal from the result of Equation 1, Xbelow and Xabove are the data points 

corresponding to the integers below and above the rank calculated in Equation 1 respectively. 

Similarly, the standard deviation was calculated across these one-minute speed 

measurements over a monthly basis.  

 

3.6 Comparison of ATR and INRIX Data 

In order to understand how the recorded speed data collected by fixed location 

sensors (ATR) and vehicle probe (INRIX) vary, a speed comparison was conducted for Iowa 

rural interstates. Seven ATR stations are located at rural interstates: one on I-29, two on I-80, 

three on I-35, and one on I-380. The nearest corresponding INRIX TMC segments were 
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identified for comparison purposes. Since ATR only reports quarterly data, to be consistent 

INRIX data were averaged by quarter. Figure 7 and Figure 8 show the differences between 

ATR and INRIX for the overall rural interstate in average speed and 85th percentile speed 

respectively.  

 

Figure 7. Average Speed Comparison between INRIX and ATR 

 

Figure 8. 85th Percentile Speed Comparison between INRIX and ATR 
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 The comparison shows that the INRIX speeds are consistently lower than ATR 

reported speeds at these selected sites. The average speeds are about 5 mph lower while the 

85th percentile speeds are about 8 mph lower. However, it should be noted these differences 

are relatively stable over the study period for both speed characteristics. Again, these 

differences might reflect the distinct mechanisms of how data were collected from these two 

sources. Probe data is provided as the average speed of vehicles over a one-minute interval 

across segments, whereas the fixed-location sensors calculate speeds by averaging spot 

speeds. In a previous study, researchers compared the speed data from probes and traditional 

sensors and noted a consistent difference between the two sources (Sharma et al., 2017).  

Other research has compared INRIX speeds against loop detector speeds as well, and also 

found around five mph consistent difference between two reported speeds (Kim & Coifman, 

2014). Also, INRIX collects speed data through the probe, most of which were located on 

freight vehicles while ATR collects all the passing vehicle speeds. The lower speeds reported 

by INRIX was potentially affected by the lower freight vehicle speed. Another finding is that 

both datasets indicate that the speeds peaked at summer months and declined at winter 

months. This is typically true for Iowa. 

 Two disaggregated plots, Figure 9 and Figure 10, were produced by separating 

interstate numbers. Note that average was taken for an interstate that has more than one 

station on it. 
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Figure 9. Average Speed Comparison by Interstates between INRIX and ATR 

 

Figure 10. 85th Percentile Speed Comparison by Interstates between INRIX and ATR 
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 As expected, the discrepancies persist comparably steady between ATR and INRIX. 

The abrupt jumps of speeds for ATR could be caused by the absence of data for several 

months, however, the INRIX reported speeds show more consistency among all rural 

interstates. 

 

3.7 Data Integration 

When analyzing crash data, The Highway Safety Improvement Program Manual 

provided by FHWA recommends using at least three years of historical/observed crash data 

(Herbel et al., 2010). For the purposes of this study, nine years of data (2008-2016) were 

obtained from the Iowa DOT’s Geographic Information Management System (GIMS). 

Two combined datasets were assembled for analysis and building statistical models, 

achieved with the aid of ArcMap. The first dataset was developed for assessing how the 

crash, injury, and fatality rates vary across the limited-access highway network and what 

roadway geometrics led to increased crash rate. The geospatial data for the Iowa interstate 

network, crash data, and weather station data between 2008 and 2016 were imported into 

ArcMap as layers. Crashes were spatially joined onto the nearest Iowa interstate segments, 

and the 25-mile buffers around the selected weather stations were joined into the roadway 

segments that they intersected. The final dataset has each row representing one segment in a 

particular year with all the geometric, traffic, and weather information. As previously 

mentioned, a total of 2578 interstate segments were examined over the nine-year period study 

period, resulting in 23,202 segment-years of data from Iowa interstates. Table 3 shows the 

summary statistics for these segments. 
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Table 3. Summary Statistics for Iowa Interstates (n=23202, segment-year) 

 Variable Min Max Mean Std. Dev 

Presence of Median Barrier (1=yes, 0=no) 0 1 0.22 0.41 

Median Width (ft) 1 100 52.77 15.52 

Four Lanes (1=yes, 0=no) 0 1 0.64 0.48 

Five Lanes (1=yes, 0=no) 0 1 0.15 0.35 

Six Lanes (1=yes, 0=no) 0 1 0.14 0.35 

Seven Lanes (1=yes, 0=no) 0 1 0.03 0.16 

Eight Lanes (1=yes, 0=no) 0 1 0.03 0.16 

Nine Lanes (1=yes, 0=no) 0 1 0.01 0.09 

Acceleration/Deceleration Lane (1=yes, 

0=no) 0 1 0.28 0.45 

Presence of Rumble Strips (1=yes, 0=no) 0 1 0.35 0.48 

Right Shoulder Width (ft) 0 40 9.85 1.28 

Left Shoulder Width (ft) 0 16 6.27 1.75 

Speed Limit 55 mph (1=yes, 0=no) 0 1 0.06 0.24 

Speed Limit 60 mph (1=yes, 0=no) 0 1 0.04 0.19 

Speed Limit 65 mph (1=yes, 0=no) 0 1 0.19 0.39 

Speed Limit 70 mph (1=yes, 0=no) 0 1 0.71 0.45 

Length (mile) 0.1 1.38 0.3 0.25 

Annual Average Daily Traffic (AADT) 2258 135300 28655 20455 

ln(AADT) 7.72 11.82 10.07 0.61 

Urban Area (1=yes, 0=no) 0 1 0.31 0.46 

Annual Average High Temperature (°F) 51.81 66.56 59.78 2.76 

Annual Average Low Temperature (°F) 32.28 44.07 38.38 2.33 

Annual Average Temperature (°F) 42.05 55.21 49.08 2.45 

Annual Precipitation (in) 20.5 57.87 38.72 7.93 

Annual Snowfall (in) 8.78 63.8 31.89 11.32 

Total Crashes 0 29 1.57 2.29 

K-injury Crashes 0 2 0.01 0.11 

A-injury Crashes 0 3 0.03 0.19 

B-injury Crashes 0 6 0.13 0.39 

C-injury Crashes 0 9 0.2 0.55 

O-injury Crashes 0 21 1.2 1.82 

 

The shoulder width was averaged across the left (inside) and right (outside) 

shoulders. Median width was also determined, and 82 out of 2578 segments had extremely 

large median widths (over 100 feet). For analysis purposes, the median width was capped at 

100 feet. 
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Other datasets were assembled that incorporated operational speed data from INRIX. 

Since INRIX data were only available after 2013, the new dataset was reduced to four years 

of data that was from 2013 to 2016. Additional operational speed data were added into the 

datasets to capture the speed characteristics of each interstate segment. The speed data from 

INRIX was aggregated by month; therefore the new datasets were created to include INRIX 

speed data as well as all traffic weather, and geometric characteristics variables. The final 

datasets have each row representing one segment in a specific month with all the geometric, 

traffic, weather information, and speed data. It should be noted that GIMS data does not 

allow for any directional analysis while INRIX provides speed data for each direction; 

therefore the speed data were averaged across opposing directions of travel. The INRIX 

TMC segments were separated into two layers based on the directions: one containing 

northbound or eastbound segments, and the other with southbound or westbound segments. 

In ArcMap, two line datasets cannot be spatially joined to one another, so additional work 

was required to integrate INRIX data with GIMS and crash data. It was found that in general, 

INRIX segments were longer than GIMS segments; thus the center point of each GIMS 

roadway segment was computed, and the two directional INRIX TMC segment layers were 

joined into the GIMS roadway centers separately. The average across the two directions of 

travel was then taken to calculate the speed characteristics of the GIMS segments. 

Ultimately, the dataset was prepared and analyzed for the entire Iowa interstate network. 

Table 4 indicates the descriptive statistics for the dataset. 
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Table 4. Summary Statistics for All Interstate Speed Model (n=123744, segment-month) 

Variable Min Max Mean Std. Dev 

Presence of Median Barrier 0 1 0.43 0.49 

Median Width 1 100 44.27 24.86 

Right Shoulder Width 0 13 9.17 2.8 

Left Shoulder Width 0 12.5 6.24 2.8 

AADT 6777 130500 52764.36 26700.46 

ln(AADT) 8.82 11.78 10.72 0.58 

Urban Area (1=yes, 0=no) 1 1 1 0 

KA-injury Crashes 0 1 0.01 0.07 

B-injury Crashes 0 2 0.02 0.15 

C-injury Crashes 0 3 0.05 0.23 

O-injury Crashes 0 6 0.17 0.45 

85th Percentile Speed 51.5 71 61.22 2.52 

Speed Standard Deviation  1.54 16.99 3.66 1.52 

Average Speed 40.03 68.3 58.7 2.76 

Speed Limit 55 mph (1=yes, 0=no) 0 1 0.060 0.240 

Speed Limit 60 mph (1=yes, 0=no) 0 1 0.040 0.190 

Speed Limit 65 mph (1=yes, 0=no) 0 1 0.190 0.390 

Speed Limit 70 mph (1=yes, 0=no) 0 1 0.710 0.450 
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CHAPTER 4.    STATISTICAL METHODOLOGY 

4.1 Random Effects Negative Binomial Regression Model 

To study how crash, injury, and fatality rates vary across the Iowa Interstate network 

and identify those characteristics associated with these crash rates, a series of regression 

models were estimated. Ultimately, crash data are comprised of non-negative integers. When 

dealing with such count data, Poisson and negative binomial are the two most commonly 

used models in the extant literature. The analyses conducted as a part of this study considered 

the number of crashes across different severity levels as the dependent variable, and a set of 

traffic, geometry characteristics, and other factors were introduced as independent variables. 

Starting with the Poisson model, the probability of the number of crashes equals yi at specific 

segment during a one-year period is shown in Equation 3. 

𝑃(𝑌 = 𝑦𝑖) =
𝐸𝑋𝑃(−𝜆𝑖)𝜆

𝑖

𝑦𝑖

𝑦𝑖!
, 𝑦𝑖 = 0,1,2, …      (3)                                                                                                                            

Where λi is the mean or expected value of a Poisson distribution, which in this case stands for 

the expected number of crashes that could occur in a segment at a given year. The expected 

number of crashes is given by Equation 4 to introduce the set of explanatory variables: 

𝜆𝑖 = 𝑒𝑥𝑝 (𝛽𝑋𝑖) Or 𝐿𝑛𝜆𝑖 = 𝛽𝑋𝑖      (4) 

Where Xi is the explanatory variable and β is the estimated parameter. 

The limitation of the Poisson model is that it assumes that the variance is equal to 

mean, which is often not true in real data. The assumption of the Poisson model makes it 

unable to address overdispersion.  As our analysis suggests that the crash data are 

overdispersed, a negative binomial model is preferred over the Poisson model. Negative 

binomial models handle overdispersion by adding an unobserved heterogeneity term ui to the 

log linear as shown in Equation 5: 
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𝐿𝑛𝑦𝑖 = 𝐿𝑛λ𝑖 +  𝐿𝑛u𝑖 =  𝛽𝑋𝑖 + 𝜀𝑖      (5) 

Thus, the probability of the number of crashes, yi, which occurs at specific segment in 

a year can be rewritten as Equation 6: 

𝑃(𝑌 = 𝑦𝑖) =
𝐸𝑋𝑃(−𝜆𝑖u𝑖)(𝜆𝑖u𝑖)𝑦𝑖

𝑦𝑖!
, 𝑦𝑖 = 0,1,2, …     (6) 

Unlike the Poisson model, the negative binomial model adds parameter α in the 

formula that describes the relationship between variance and mean, which can be expressed 

as Equation 7: 

𝑉𝐴𝑅(𝑦𝑖)  =  𝐸[𝑦𝑖]{1 + 𝛼𝐸(𝑌𝑖)}      (7) 

From this equation, it is observed that when α is equal to zero, the negative binomial model is 

transformed to the Poisson model. 

For achieving good results with the Poisson and the negative binomial models, the 

crash data should be uncorrelated in time. In this study, both models seem to be inappropriate 

as unobserved heterogeneity and serial correlation are present in the crash data. The random 

effects negative binomial (RENB) model is a more suitable alternative. It can deal with the 

spatial and temporal effects in the data set by treating the data in a time-series cross-section 

panel. The RENB model is expressed as follow: 

𝐸(𝜆𝑖𝑡)  =  𝑒𝑥𝑝(𝛽𝑋𝑖𝑡  +  µ𝑖  +  𝜀𝑖𝑡)       (8) 

Where E(𝜆 it) stands for the predicted number of crashes in segment i in year t, Xit is a vector 

of explanatory variables, β is a vector of estimable parameters, εit is the vector of residual 

errors, and µi is the random effects for the ith segment. 

As for the interpretation of coefficients, if Xi is continuous, the percent change in 

mean response when Xi is increased by one unit and the other X variables are held constant, 

is given as: 
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100 × [𝑒𝑥𝑝(𝛽̂1) − 1]          (9) 

If Xi is binary, the percent change in mean response when Xi is equal to one, and other X 

variables are held fixed is also expressed as Equation 9. 

 

4.2 Seemingly Unrelated Regression Equations Model 

In addition to impacts on crash rates and severity, it is also important to consider the 

impact of speed limit policy on driver speed selection and how this correlates to crashes. 

Three common speed measures, the mean speed, 85th percentile speed, and speed variance, 

were compared with crash frequencies while controlling for the effects of roadway geometry 

and traffic volumes. Typically, separate models are developed for various speed measures 

such as average speed and percentile speed. However, the model results might be biased due 

to the recursive or endogenous relationship between speed measures. To account for this 

issues, a seemingly unrelated regression equations (SURE) model was introduced. 

In this study, the SURE model consists of three single equations that simultaneously 

predict the mean speed, 85th percentile speed, and speed variance. 

 𝑀𝑆𝑖 =  𝛽1𝑖𝑋 + 𝜀1𝑖        (10) 

 𝑆𝑃85𝑖 =  𝛽2𝑖𝑋 +  𝜀2𝑖        (11) 

 𝑆𝐷𝑆𝑖 =  𝛽3𝑖𝑋 +  𝜀3𝑖        (12) 

Where: MSi is the mean speed at segment I; SP85i represents the 85th percentile speed at 

segment I; SDSi is calculated standard deviation of speeds at segments I; The β terms are the 

estimated regression coefficients; X is a vector of crash, traffic, roadway geometry, weather 

characteristics; and the ε terms represent unobserved characteristics. 
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 Although Equation 10, 11, and 12 are seemingly unrelated and do not directly interact 

with each other (e.g., the mean speed does not directly affect the 85th percentile speed or 

speed variance), there are some unobserved shared characteristics since all three values are 

calculated for the same segment. This cross-equation correlation is captured in the error term. 

SURE provides efficient parameter estimates by considering the contemporaneous 

correlation of disturbances, ε1, ε2, and ε2. A detailed discussion on SURE can be found in 

Statistical and Econometric Methods for Transportation Data Analysis (Washington et al., 

2010). Separate models were created for mean speeds, 85th percentile speeds, and speed 

standard deviations for all interstate segments. 
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CHAPTER 5.    RESULTS AND DISCUSSION 

5.1 Historical Crash Trend on Iowa Interstates 

Iowa most recently raised its maximum speed limit from 65 mph to 70 mph in 2005. 

A previous study conducted evaluated the short-term impacts of this speed limit increase on 

traffic safety (Souleyrette & Cook, 2010). In this report, annual fatal and serious injury 

crashes were examined from 1991 to 2009 across those interstate sections where speed limits 

were increased to 70 mph. As a continuation of that study, these same plots were extended to 

2017, the most current year for which data were available. There were two years of overlap 

between the previous study period and the current study period, 2008 and 2009. These were 

used to verify that the number of crashes was consistent across the two datasets.  

Instead of merely plotting the number of fatal and serious crashes over the years, 

changes in vehicle-miles traveled (VMT) were also taken into consideration. The VMT 

information was collected from 30-year historical VMT by system table provided on the 

Iowa DOT website (Iowa DOT, 2018). As a result, plots for the crash rate over the years 

were produced, shown in Figure 11 and Figure 12. 

 

Figure 11. Fatal Crash Rate from 1991 to 2017 on Sections Increased to 70 mph 
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Figure 12. Serious Crash Rate from 1991 to 2017 on Sections Increased to 70 mph 

 These plots show that the fatal crash rate fluctuated significantly over the study 

period, ranging from between 0.2 and 0.8 crashes per hundred million vehicle-miles traveled 

(HMVMT). Between the periods before and after the speed limit change (excluding data 

from the calendar year 2005), it was found that the average number of fatal crashes per year 

increased from 20.8 to 22.2, resulting in a 6.7 percent increase. However, when normalizing 

the data by VMT, the average crash rate declined by 8.3 percent, or from 0.46 to 0.42 fatal 

crashes per HMVMT. In terms of serious crash rate (i.e., fatal (K) or serious injury (A) 

crashes), as Figure 20 shows, there was a general declining trend. Upon examining the raw 

data, the average number of serious crashes per year decreased from 104.1 to 74.9 (a 

decrease of 28 percent), while serious crashes per HMVMT dropped by 39 percent from 2.35 

to 1.44. 

In both fatal and serious injury rates, a short-term increase occurred in the years 

immediately following the speed limit increases. Subsequently, crashes tended to trend 

downward over time, which is broadly reflective of national trends over this same time 
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traffic safety countermeasures implemented and more advanced motor vehicle technologies 

over the years. 

 Table 5 presents the average number of total, fatal, and serious (fatal and severe) 

interstate crashes over the nine-year period (2008 to 2016). Despite that much larger portion 

(78%) of the interstate network locates on rural areas, the yearly average number of total 

crashes are nearly the same for both rural interstate (2098) and urban interstate (1985) and 

43% of serious interstate crashes occurred on the urban interstate. 

Table 5. Summary Statistics for Annual Average Number of Total, Fatal, and Serious 

Crashes by Interstate Type, 2008 to 2016 

Interstate Type Total Crashes Fatal Crashes 

Serious Crashes 

(fatal + severe) 

55mph 446 2 11 

60 mph 277 1 7 

65 mph (urban) 1,033 7 26 

65 mph (rural) 63 1 2 

70 mph (urban) 198 1 6 

70 mph (rural) 2,034 21 67 

 

 Table 6 shows the serious crash percentage by collision types on the different types of 

interstates in Iowa. The percentage was calculated using data from 2008 to 2016, and the 

collision types were classified into four groups, which were single-vehicle, rear-end, head-on 

or opposite direction sideswipe, same direction sideswipe, and other. 
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Table 6. Crash Type Distribution for Various Interstate Types, 2008 to 2016 

Interstate Type 
Single 

Vehicle 

Rear 

End 

Head-On/Opposite 

Direction Sideswipe 

Same Direction 

Sideswipe 
Other 

55mph 52.0 25.5 5.9 10.8 5.9 

60 mph 46.2 29.2 6.2 16.9 1.5 

65 mph (urban) 53.8 22.0 9.7 11.8 2.7 

65 mph (rural) 56.5 18.8 7.2 15.9 1.4 

70 mph (urban) 69.4 16.3 4.1 6.1 4.1 

70 mph (rural) 56.8 20.1 12.6 7.6 2.8 

 

The results suggest that the interstate segments with lower speed limits (55 mph and 

60 mph) had a higher percentage of serious rear-end collisions. These lower-speed segments 

are located within urban areas. Higher traffic volumes and greater density of interchanges 

may lead to a higher risk of rear-end collisions. Meanwhile, the head-on or opposite direction 

sideswipe serious crashes were found to be most prevalent on rural interstates with 70 mph 

speed limit. Head-on collisions are more likely to include fatalities and serious injuries 

because of the destructive nature of such crashes. Compared to other types of interstates, 70 

mph rural interstate has more roadway miles lacking median barriers, making it easier for 

vehicles to cross the median and collide with vehicles in the opposite direction. 

Three plots detailing crash rates over time were constructed distinguishing the speed 

limits where crashes happened. Since these plots required more disaggregated information 

such as VMT on the roadway with different speed limits, it was only possible to form the 

graphs for the nine-year period with the assembled dataset. Crashes that occurred on 

roadways with different speed limits were counted separately, and the VMT on roads with 

different speed limits was calculated by multiplying the annual average daily traffic (AADT) 

by the length of the segment, then adding all the segments’ VMT on each speed limit. 
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Figure 13. Total Crash Rate by Interstate Types from 2008 to 2016 

 

Figure 14. Fatal Crash Rate by Interstate Types from 2008 to 2016 
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Figure 15. Serious Crash Rate by Interstate Types from 2008 to 2016 

 Figure 13 shows that total crash rates were consistently higher on 55 mph segments 

than other segments. These segments are typically located in urban areas with higher 

amounts of traffic, lower design speeds, and a higher density of entry and exit ramps, which 

would both tend to increase the risk of crashes. Although 70 mph segments tend to have 

lower total crash rates than segments with lower speed limits, this does not necessarily mean 

the overall interstate crash rate would be reduced by simply increasing the speed limits of all 

segments to 70 mph. Here again, the selection of the speed limit relates to the segment 

characteristics—such roadways would likely have less traffic, higher design speeds, and 

lower densities of entry and exit ramps. Other segment-specific control variables, such as 

safety countermeasures (median barriers, rumble strips, etc.), roadway geometry, weather 

information, and operating speeds, should be taken into consideration to reveal the factors 

contributing to the change of the number of crashes and crash rates. 

No apparent trends were found by examining the number of fatal (Figure 14) and 

serious crashes (Figure 15) for segments of different speed limits over the study period. 
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5.2 Iowa Interstates Safety Assessment   

Upon examining the historical crash trends on Iowa interstates, the datasets that 

contained nine years of crash data (2008-2016) were leveraged to study the relationship 

between safety and various factors. The Iowa-specific analysis features a series of RENB 

models that were developed to study how crash, injury, and fatality rates vary across the 

Iowa interstate network and the characteristics that lead to increased crash rate. Segment-

level ID and year were used as the random effects in the models and segment length was 

treated as an offset term. Five different crash frequency prediction models were estimated: 

the first was a total crash frequency prediction model, followed by four severity-specific 

crash frequency prediction models that were constructed separately. The four different 

severity models predicted the number of combined fatal or major injury crashes (KA), minor 

injury crashes (B), possible injury crashes (C), and property-damage-only (PDO) crashes (O). 

The results of these five models are found in Table 7. 

Table 7. Regression Model Results for Annual Segment Crashes by Severity Level (2008-

2016) 

Severity Parameter Estimate Std. Error Pr(>|z|) 

Total 

Intercept -8.300 0.330 <0.001 

Ln AADT 1.034 0.029 <0.001 

Presence of Median Barrier (1=yes, 0=no) 0.132 0.022 <0.001 

Median Width (ft) -0.002 0.001 0.003 

Right Shoulder Width (ft) -0.046 0.008 <0.001 

Speed Limit 60 mph (1=yes, 0=no) -0.436 0.073 <0.001 

Speed Limit 65 mph (1=yes, 0=no) -0.225 0.052 <0.001 

Speed Limit 70 mph (1=yes, 0=no) -0.468 0.052 <0.001 

Annual Snowfall (in) 0.005 0.001 <0.001 

Acceleration/Deceleration Lane (1=yes, 

0=no) 0.068 0.028 0.016 

KA 

Intercept -8.514 0.963 <0.001 

Ln AADT 0.744 0.087 <0.001 

Presence of Median Barrier (1=yes, 0=no) -0.167 0.095 0.078 
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Table 7. (continued) 

 

Median Width (ft) -0.002 0.002 0.422 

Right Shoulder Width (ft) -0.042 0.020 0.036 

Speed Limit 60 mph (1=yes, 0=no) -0.139 0.175 0.427 

Speed Limit 65 mph (1=yes, 0=no) -0.232 0.133 0.080 

Speed Limit 70 mph (1=yes, 0=no) -0.604 0.135 <0.001 

Annual Snowfall (in) 0.000 0.004 0.977 

B 

Intercept -9.114 0.652 <0.001 

Ln AADT 0.896 0.059 <0.001 

Presence of Median Barrier (1=yes, 0=no) -0.094 0.058 0.105 

Median Width (ft) -0.003 0.002 0.084 

Right Shoulder Width (ft) -0.037 0.014 0.006 

Speed Limit 60 mph (1=yes, 0=no) -0.430 0.116 <0.001 

Speed Limit 65 mph (1=yes, 0=no) -0.482 0.085 <0.001 

Speed Limit 70 mph (1=yes, 0=no) -0.860 0.088 <0.001 

Annual Snowfall (in) 0.007 0.002 0.001 

C 

Intercept -10.946 0.585 <0.001 

Ln AADT 1.144 0.053 <0.001 

Presence of Median Barrier (1=yes, 0=no) -0.002 0.050 0.975 

Median Width (ft) -0.007 0.001 <0.001 

Right Shoulder Width (ft) -0.040 0.012 <0.001 

Speed Limit 60 mph (1=yes, 0=no) -0.537 0.098 <0.001 

Speed Limit 65 mph (1=yes, 0=no) -0.628 0.073 <0.001 

Speed Limit 70 mph (1=yes, 0=no) -1.116 0.076 <0.001 

Annual Snowfall (in) 0.008 0.002 <0.001 

O 

Intercept -9.014 0.354 <0.001 

Ln AADT 1.065 0.031 <0.001 

Presence of Median Barrier (1=yes, 0=no) 0.176 0.024 <0.001 

Median Width (ft) -0.001 0.001 0.093 

Right Shoulder Width (ft) -0.050 0.008 <0.001 

Speed Limit 60 mph (1=yes, 0=no) -0.420 0.077 <0.001 

Speed Limit 65 mph (1=yes, 0=no) -0.104 0.055 0.058 

Speed Limit 70 mph (1=yes, 0=no) -0.310 0.055 <0.001 

Annual Snowfall (in) 0.005 0.001 <0.001 

 

In interpreting the model results, a positive estimate indicates a positive correlation 

with crash frequencies while a negative estimate is associated with an inverse relationship 

with crash frequencies. It was evident that higher AADT is associated with higher crash 

frequencies for all types of severities. Higher traffic volume would likely increase the risk of 
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being involved in a collision. Also, a study has shown that conflict risk would potentially 

increase with higher traffic density (Kuang et al., 2017). 

The segments with median barrier installed were found to experience 14 percent more 

total crashes, which might result from the fact that median barriers are designed to convert 

some potential fatal or severe crashes to less severe crashes or PDO crashes. As the KA and 

O model results show, the segments with median barriers were subject to statistically 

significantly fewer fatal or severe crashes (15 percent decrease) and more PDO crashes (19 

percent increase). 

Other roadway geometric configurations, such as median width and right shoulder 

width, also had impacts on the crash frequencies. In general, the wider the median width and 

shoulder width, the lower the crash frequencies per mile. Compared to the segments with 

narrow shoulders and medians, segments with wider shoulders and medians would have 

adequate space for the drivers to adjust vehicles or sometimes get back to the traffic lane 

when the cars depart the roadway. In addition, the model results illustrate that interstate 

segments near interchanges that have acceleration or deceleration lanes were associated with 

a 7 percent higher crash frequency per mile. 

The impacts of weather conditions on crash frequencies were also captured in these 

models by including an annual snowfall term. A previous study conducted by Eisenberg and 

Warner (2005) argued that compared to dry days, snow days had fewer fatal crashes and 

more non-fatal injury and PDO crashes. The results from the present study agree with these 

claims, as it was found that higher annual cumulative snowfall was correlated with higher 

crash frequencies for all severity types except fatal crashes. A reason for this is that although 

one might think that driving in snow increases the risk of having a severe traffic crash due to 
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less friction and visibility issues, it might also encourage drivers to drive slower and more 

cautiously in snowy days, and the traffic volume might also be lower in those days. 

The model results were also graphically displayed to visualize how crash frequency 

varies across roadways with different speed limits. Each line was plotted by inputting the 

average characteristics of each specific speed limit group into the estimated crash prediction 

function. 

 

Figure 16. Expected Number of Total Crash with Different AADT 
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Figure 17. Expected Number of KA-Injury Crash with Different AADT 

 

Figure 18. Expected Number of B-Injury Crash with Different AADT 
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Figure 19. Expected Number of C-Injury Crash with Different AADT 

 

Figure 20. Expected Number of O-Injury Crash with Different AADT 
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 Figure 16 through Figure 20 demonstrate that higher crash frequencies were expected 

on lower-speed portions of the Iowa interstate network, which are typically located near 

urban or suburban areas where more complicated traffic patterns and roadway configurations 

would be anticipated. For all crash severities, 55-mph roadways had the highest crash 

frequencies while 70-mph roadways had the lowest. The estimated coefficients and graphs 

for speed limits were intuitive. However, some caution is needed when interpreting these 

results due to the complicated interactions between traffic conditions, roadway conditions, 

and driver behavior.  

In addition to the crash frequencies calculated from the model estimates, crash rates 

were also predicted by dividing the crash frequency by roadway HMVMT. The RENB 

models predicted crashes per mile per year, it was then converted to an equivalent rate of 

crashes per 100 million vehicle miles traveled. Crash rates were estimated for the entire 

interstate network as well as each speed limit group for total and severity-specific crashes as 

shown in Table 8. 

Table 8. Predicted Number of Crashes per Hundred Million Vehicle Miles Traveled  

Predicted Crash per 

HMVMT 

All 

Interstate 

55 mph 

Roadway 

60 mph 

Roadway 

65 mph 

Roadway 

70 mph 

Roadway 

Total 45.2 74.6 54.4 56.4 40.5 

KA 1.5 2.1 1.6 1.6 1.4 

B 3.7 7.4 4.8 4.5 3.3 

C 4.8 14.5 10.0 7.1 3.8 

O 34.5 50.0 37.7 43.0 31.5 

 

Table 8 illustrates that 55-mph roadways had about 84 percent more traffic crashes 

than 70-mph roadways. Additionally, the injury (type B) and more severe (type KA) crashes 

per HMVMT were nearly doubled on the 55-mph roadways compared to the 70-mph 
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roadways. The crash, injury, and fatality rates were similar on 60- and 65-mph roadways, and 

the general decreasing trend of crash rate as the posted speed limit increase was observed on 

almost all type of crashes.  

Ultimately, the results indicate that the increased crash rate on the lower speed 

segments is likely caused by the lower design speed and roadway geometry standards. The 

findings suggest that extensive reconstruction and improvements are required to decrease the 

crash rate on those lower speed segments. These might include redesigning horizontal and 

vertical alignments, adding guardrails, increasing the lengths of merging tapers, purchasing 

right of ways, and implementing new signs and markings. 

One limitation of the analyses is that the operational speed information was lacking. 

Although the regression models included the maximum speed limit as explanatory variables 

to control for the speed characteristics to some extent, the actual operating speed 

characteristics might still vary on different roadway segments. Therefore, it is essential to 

discern how speed changes on different roadway segments and how the operating speed 

affects safety as well. 

 

5.3 Relationship between Speed and Roadway Characteristics 

To examine the impacts of roadway geometric characteristics on speed measures, and 

how the drivers react to the roadway features on average, SURE models were estimated 

using the speed data between 2013 and 2016. The analysis included geometric and traffic 

volume related variables. Three speed measures were investigated, which are average speed, 

85th percentile speed, and standard deviation of speed. Table 9 indicates the results of the 

SURE models for the entire interstate network. 
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Table 9. Seemingly Unrelated Regression Equations (SURE) Results for All Interstates 

(2013-2016) 

  Mean Speed Model 

Parameter Estimate Std. Error Pr(>|t|) 

Intercept 49.009 0.136 <0.001 

Ln AADT 0.806 0.012 <0.001 

Urban Area (1=yes, 0=no) -1.038 0.019 <0.001 

Presence of Median Barrier (1=yes, 0=no) 0.112 0.013 <0.001 

Right Shoulder Width 0.106 0.004 <0.001 

Left Shoulder Width 0.059 0.003 <0.001 

Median Width 0.016 0.000 <0.001 

Speed Limit 60 mph (1=yes, 0=no) 2.665 0.032 <0.001 

Speed Limit 65 mph (1=yes, 0=no) 5.880 0.023 <0.001 

Speed Limit 70 mph (1=yes, 0=no) 8.037 0.026 <0.001 

  85th Percentile Speed Model 

Parameter Estimate Std. Error Pr(>|t|) 

Intercept 49.765 0.134 <0.001 

Ln AADT 1.004 0.012 <0.001 

Urban Area (1=yes, 0=no) -0.933 0.019 <0.001 

Presence of Median Barrier (1=yes, 0=no) 0.073 0.012 <0.001 

Right Shoulder Width 0.087 0.004 <0.001 

Left Shoulder Width 0.033 0.003 <0.001 

Median Width 0.013 0.000 <0.001 

Speed Limit 60 mph (1=yes, 0=no) 2.619 0.031 <0.001 

Speed Limit 65 mph (1=yes, 0=no) 5.971 0.022 <0.001 

Speed Limit 70 mph (1=yes, 0=no) 8.330 0.026 <0.001 

  Speed Standard Deviation Model 

Parameter Estimate Std. Error Pr(>|t|) 

Intercept 0.970 0.076 <0.001 

Ln AADT 0.309 0.007 <0.001 

Urban Area (1=yes, 0=no) 0.278 0.011 <0.001 

Presence of Median Barrier (1=yes, 0=no) -0.118 0.007 <0.001 

Right Shoulder Width -0.053 0.002 <0.001 

Left Shoulder Width -0.026 0.002 <0.001 

Median Width -0.005 0.000 <0.001 

Speed Limit 60 mph (1=yes, 0=no) 0.277 0.018 <0.001 

Speed Limit 65 mph (1=yes, 0=no) -0.051 0.012 <0.001 

Speed Limit 70 mph (1=yes, 0=no) -0.161 0.015 <0.001 
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 The coefficient estimates of the binary indicator for urban areas are negative for mean 

speed and 85th percentile speed models, while the estimate is positive in the standard 

deviation of speed model. This demonstrates that drivers are likely to choose lower speeds in 

an urban environment due to the complex traffic and roadway conditions. However, different 

people react to the urban environment in different ways, and traffic congestion is more likely 

to occur in urban areas than in rural areas, leading to more variation in speed. Another binary 

indicator for the presence of median barrier suggests that segments with a median barrier 

tend to have a higher average and 85th percentile speed and lower speed variance. Similar 

trends are observed for the continuous variables, which are right shoulder width, left shoulder 

width, and median width. As the right shoulder width, left shoulder width, and median width 

increase, the average and 85th percentile increase as well while the standard deviation of 

speed decreases. This could be explained by that drivers perceive the safer roadway features 

and choose a higher traveling speed accordingly. Also, drivers might have a more consistent 

speed selection on safer roads suggested by the lower speed variation observed. The binary 

indicators for speed limits demonstrate that how the speed measures vary on roadways with 

different speed limits. The 55 mph speed limit was treated as the base scenario. As the mean 

speed and 85th percentile speed models show, compared to segments with 55 mph speed 

limit, roadways with higher speed limit generally are associated with higher average speed 

and 85th percentile speed. Interestingly, the parameter estimates illustrate that compared to 55 

mph interstates, the mean speed is 2.7 mph, 5.9 mph, and 8.0 mph higher on 60 mph, 65 

mph, and 70 mph roadways respectively. The increase in the mean speeds is much lower than 

the actual posted speed limit increase. Similar trend is also found in the 85th percentile speed 

model. In the speed standard deviation model, it was found that the 60 mph interstates are 
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associated with the highest speed standard deviation, followed by 55 mph, 65 mph, and 70 

mph interstates. 

 Ultimately, the SURE models show that driver speed choice is impacted by roadway 

geometric characteristics. The mean speed and 85th percentile speed models show that drivers 

are suspected to generally select a higher speed on the interstate with good geometry design 

standards, such as broader shoulder width and wider median width. Besides, drivers are 

likely to select faster speeds where the median barrier has been installed. The standard 

deviation of speed measures the variability of the operating speeds. As the speed standard 

deviation models indicate, the speed variance is typically the highest in the urban areas with a 

lower speed limit, narrower right and left shoulder widths and median width, and no median 

barrier installed. 

 

5.4 Relationship between Speed and Safety 

To further study the relationship between operational speeds and crash frequencies, 

an additional set of RENB models were created by including speed measures, such as speed 

variance and average speed, as the explanatory variables. Additional variables, such as 

traffic, roadway geometry, were added in the model as the control variables. These models 

utilized the segment-month datasets prepared from 2013 to 2016. Three random effect terms, 

segment-level ID, year, and month, were introduced to account for spatial and temporal 

effects. These random effects accounted for the unobserved site-specific heterogeneity and 

allowed the fixed effects to vary for each segment in certain years. Since GIMS segments do 

not have a uniform length, segment length was included in the models as an offset term. This 

enables the models to estimate the crash rate on a per-mile basis. Five RENB models were 

developed for the entire interstate network. One used the total number of crashes as the 
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dependent variable, while the other four used different severity types. Table 10 shows the 

model results. 

Table 10. Regression model Results for Monthly Crashes with Different Severity Types 

(2013-2016) 

Severity  Parameter Estimate Std. Error Pr(>|z|) 

Total 

Intercept -11.080 0.545 <0.001 

Ln AADT 1.117 0.037 <0.001 

Standard deviation of speed 0.201 0.010 <0.001 

Average speed -0.023 0.007 0.002 

Median Width -0.001 0.001 0.211 

Right Shoulder Width -0.023 0.009 0.016 

Presence of Median Barrier (1=yes, 0=no) 0.059 0.034 0.085 

Speed Limit 60 mph (1=yes, 0=no) -0.418 0.083 <0.001 

Speed Limit 65 mph (1=yes, 0=no) -0.127 0.073 0.083 

Speed Limit 70 mph (1=yes, 0=no) -0.196 0.087 0.025 

KA 

Intercept -11.891 2.377 <0.001 

Ln AADT 0.388 0.154 0.012 

Standard deviation of speed 0.290 0.048 <0.001 

Average speed 0.043 0.035 0.228 

Median Width -0.004 0.004 0.306 

Right Shoulder Width 0.033 0.038 0.381 

Presence of Median Barrier (1=yes, 0=no) -0.028 0.145 0.846 

Speed Limit 60 mph (1=yes, 0=no) -0.383 0.330 0.245 

Speed Limit 65 mph (1=yes, 0=no) -0.734 0.313 0.019 

Speed Limit 70 mph (1=yes, 0=no) -0.994 0.380 0.009 

B 

Intercept -13.830 1.312 <0.001 

Ln AADT 0.934 0.087 <0.001 

Standard deviation of speed 0.216 0.027 <0.001 

Average speed 0.015 0.019 0.455 

Median Width -0.001 0.002 0.782 

Right Shoulder Width -0.017 0.018 0.350 

Presence of Median Barrier (1=yes, 0=no) -0.060 0.078 0.437 

Speed Limit 60 mph (1=yes, 0=no) -0.393 0.157 0.013 

Speed Limit 65 mph (1=yes, 0=no) -0.539 0.162 <0.001 

Speed Limit 70 mph (1=yes, 0=no) -0.807 0.205 <0.001 

C 
Intercept -13.123 1.104 <0.001 

Ln AADT 1.153 0.076 <0.001 
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Table 10. (continued) 

 

Standard deviation of speed 0.197 0.022 <0.001 

Average speed -0.020 0.016 0.210 

Median Width -0.007 0.002 <0.001 

Right Shoulder Width -0.003 0.015 0.864 

Presence of Median Barrier (1=yes, 0=no) -0.035 0.070 0.614 

Speed Limit 60 mph (1=yes, 0=no) -0.577 0.133 <0.001 

Speed Limit 65 mph (1=yes, 0=no) -0.655 0.135 <0.001 

Speed Limit 70 mph (1=yes, 0=no) -1.031 0.172 <0.001 

O 

Intercept -11.310 0.585 <0.001 

Ln AADT 1.160 0.040 <0.001 

Standard deviation of speed 0.184 0.011 <0.001 

Average speed -0.034 0.008 <0.001 

Median Width -0.0001 0.001 0.889 

Right Shoulder Width -0.023 0.010 0.019 

Presence of Median Barrier (1=yes, 0=no) 0.081 0.036 0.024 

Speed Limit 60 mph (1=yes, 0=no) -0.374 0.089 <0.001 

Speed Limit 65 mph (1=yes, 0=no) 0.091 0.079 0.248 

Speed Limit 70 mph (1=yes, 0=no) 0.098 0.095 0.302 

 

Similar to the previous findings, higher AADT is associated with higher crashes. 

Additionally, based on the model results, it could be found that there were strong positive 

correlations between the number of crashes in all severity types and standard deviation of 

speed. The estimates indicate that a one-unit increase in standard deviation of speed would 

result in a 22.2% increase in the total number of crashes, a 33.6% increase in the number of 

serious crashes (fatal and serious injury), a 24.1% increase in the number of B-injury crashes, 

a 21.8% increase in the number of C-injury crashes, and a 20.1% increase in the number of 

O-injury crashes. The results demonstrate that severe crashes are likely to be more sensitive 

to the speed standard deviation. Some prior research presented similar findings that speed 

variance was highly correlated with crash frequencies (Lave, 1985; Garber & Gadiraju, 

1989). Segments with wider shoulder widths and median width were generally associated 
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with fewer crashes. The presence of the median barrier was suspected of lowering the severe 

crash frequencies but increasing the PDO crash frequencies. 

Table 11 shows the descriptive statistics of the speed measures in each speed limit 

group. One interesting finding is that the mean value for the speed standard deviation is the 

lowest in the 70 mph group, suggesting that traffic speed was more uniform in the high-speed 

segments. 

Table 11. Descriptive Statistics for Speed Measures under Different Speed Limit Groups 

Segment Variable Min Max Mean Std. Dev 

55 mph 

85th Percentile Speed 51.5 71.0 61.2 2.5 

Speed Standard Deviation 1.5 17.0 3.7 1.5 

Average Speed 40.0 68.3 58.7 2.8 

60 mph 

85th Percentile Speed 58.0 70.5 64.1 1.5 

Speed Standard Deviation 1.6 8.4 4.1 1.6 

Average Speed 54.9 68.2 61.5 1.7 

65 mph 

85th Percentile Speed 54.5 73.5 67.4 2.2 

Speed Standard Deviation 1.6 12.7 3.4 1.2 

Average Speed 50.2 69.7 64.9 2.4 

70 mph 

85th Percentile Speed 59.0 73.5 69.8 1.4 

Speed Standard Deviation 1.4 10.2 2.9 0.7 

Average Speed 58.0 70.5 67.2 1.3 

 

 Ten graphs were created to visually illustrate how crashes change with respect to the 

standard deviation of speed and the mean speed. Each line was plotted by five points which 

were calculated by changing the variable of interest while keeping other variables at the 

mean in each speed limit group. Within each speed limit group, the five points used the mean 

value of the variable of interest as well as one standard deviation and two standard deviations 
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away from the mean in both directions. The values were inputting into the regression 

equations estimated in Table 10 to get the predicted crash frequencies.  

 

Figure 21. Relationship between Total Crash Frequency and Speed Standard Deviation 

 

Figure 22. Relationship between KA-Injury Crash Frequency and Speed Standard Deviation  
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Figure 23. Relationship between B-Injury Crash Frequency and Speed Standard Deviation 

 

Figure 24. Relationship between C-Injury Crash Frequency and Speed Standard Deviation 
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Figure 25. Relationship between O-Injury Crash Frequency and Speed Standard Deviation 
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Figure 26. Relationship between Total Crash Frequency and Average Speed 

 

Figure 27. Relationship between KA-Injury Crash Frequency and Average Speed 
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Figure 28. Relationship between B-Injury Crash Frequency and Average Speed 

 

Figure 29. Relationship between C-Injury Crash Frequency and Average Speed 
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Figure 30. Relationship between O-Injury Crash Frequency and Average Speed 
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that increasing speed limits leads to an increase in crashes, as discussed in the literature 

review. It is evident that average speeds will increase with higher maximum speed limits. 

However, raising the maximum speed limit without increasing the minimum speed limit 

might also introduce higher speed variance. Further studies are required to understand the 

interrelationship between average speed, speed variation, speed limits, and roadway 

geometry. 

Compared to the analyses in Chapter 5.1, the analyses presented in this chapter 

provide more detailed models that include additional speed information. Based on the model 

results, higher speed variance is associated with more crashes, while the absolute speed of 

traffic does not necessarily correspond to higher crash occurrences. The impacts of speed 

variance are likely to be higher for more severe crashes on lower speed segments. 
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CHAPTER 6.    CONCLUSION 

6.1 Summary of Findings 

This study provides valuable insights into the relationship between driver speed 

selection and crash risk. The variables assessed in this study include traffic volume, weather 

conditions, roadway geometry, and various operating speed measures. Separate analyses 

were conducted which leveraged Iowa roadway information, crash information, weather, 

ATR, and INRIX data.  

A simple before-and-after comparison of fatal and serious crash rates on Iowa 

Interstates from 1991 to 2017 shows that crashes increased in the few years after the 2005 

speed limit increase, but crashes have generally declined since that time. This is likely due to 

many factors, including the implementation of roadway crash countermeasures that were 

implemented over these years such as median cable barrier, and rumble strips, among others. 

In general, crashes tended to be higher on segments with lower speed limits. However, it is 

essential to acknowledge that these lower speed limits are often in place due to the more 

complex urban environments that are subject to higher traffic volumes, more frequent 

interactions between vehicles (particularly near exit/entrance ramps), and lower design 

speeds than would be observed in rural environments. Indeed, the 55-mph segments, which 

were all located in urban areas, were found to consistently have the highest total crash rates 

over the study period.  

Further study was conducted to better understand the relationship between different 

factors and increased crash rate. The findings suggested that traffic, roadway, and weather 

characteristics were correlated with the occurrence of crashes. The annual average daily 

traffic was positively correlated with crashes in all severity types. As for the roadway 
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geometry variables, the presence of median barrier was suspected to significantly reduce the 

fatal and severe crashes while increasing property damage only crashes. The overall total 

number of crashes was expected to be higher on segments with a median barrier installed. 

The result demonstrated that the median barrier could likely mitigate crash severity 

effectively. In addition, the wider median width and right shoulder width also might help 

reduce the crash frequency with all different severity levels on a roadway segment. The 

segments that had deceleration or acceleration lanes were expected to experience more total 

crashes compared to others, which may be likely caused by the frequent merging activities 

and increased speed variance on such roadway segments. Another variable examined in the 

analyses was the annual snowfall. The model results illustrated that all crash types except 

fatal and serious crashes were likely to increase with higher accumulated snowfall.  

Upon assessing the operating speed data from INRIX, speeds were generally lower in 

urban areas, which was measured by average and 85th percentile speeds, while the standard 

deviation of speeds on urban interstates was greater. The higher mean and 85th percentile 

speeds occurred on rural interstates with broader shoulders and median widths. In term of the 

speed variance, as measured by the standard deviation of speed models, the higher standard 

deviations were predicted to take place under the following circumstance: urban areas that 

have 60 mph speed limit, narrow shoulder widths and median widths, and no median barrier 

present. 

After investigating the impact of roadway geometry on speed measures, it was 

necessary to evaluate whether operating speed measures influence the crash frequencies as 

well. Separate models were estimated for interstate crashes with different severity types. Two 

speed measures were included in the models, which were mean speed and speed variance, 
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while controlling for the effects of geometry and traffic that may affect both speeds and 

safety. It was suspected that speed variance were the major contributing factors that lead to 

increased crash rate, and the effects were stronger on lower speed segments. The intensity of 

the speed variance impacts gradually increased with more severe crashes. Meanwhile, the 

mean speed seemed to have insignificant effects or sometimes negative correlations with 

crashes, which was in line with some prior studies. It was proposed that the lower crash 

frequency observed on the segments with high mean speed was largely associated with the 

higher design standards and overall safer roadway geometry. 

The findings of this study demonstrate that traffic safety is impacted by a 

combination of various factors including operational speeds, roadway geometry, 

environmental conditions, and traffic volumes. The results provide empirical support of prior 

research, which suggest that the average speed might be less influential than speed variance 

on safety and higher standard deviation of speed is associated with the higher crash rates. 

These findings provide policymakers insights to help support the establishment of maximum 

statutory speed limits. Also, this study examines how speed measures are influenced by 

roadway geometric characterizes as well as how the site-specific factors can affect safety. 

The results of these analyses provide roadway designers insights on the design of a safer 

interstate system. In addition, this study demonstrates that the lower speed interstate 

segments are subjected to higher crash risk where substantial reconstruction might be needed 

in order to meet the higher design speed.  

 

6.2 Limitations and Future Research 

Ultimately, this study provides important information on how various factors can 

impact traffic safety on interstates. However, there were several limitations worth mentioning 
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to understand the nature of these relationships better. One limitation of this study was that the 

Geographic Information Management System (GIMS) database maintained by Iowa DOT 

was utilized for integrating traffic, roadway, and crash data. The disadvantage of this 

database was that directional analysis was not supported. Therefore all the specific site 

features were aggregated by averaging two directions. Additionally, it was challenging to 

integrate INRIX data into the GIMS roadway segments, as INRIX not only provides 

directional speeds but it divides the interstate segments in a different way than GIMS.  

Note that a new database, the Roadway Asset Management System (RAMS), has 

been adopted by Iowa DOT. RAMS will allow for the collection and maintenance of 

roadway asset data on a directional basis. As such, with more data available over the years, 

future research should leverage this dataset for directional analysis to examine the 

interrelationships with better resolution. Furthermore, the weather data was collected from 

the weather stations across the state and was integrated into the adjacent interstate segments. 

These weather stations might not be able to provide great accuracy in representing the 

weather conditions at each segment as relatively large buffers around weather stations were 

generated to ensure entire coverage of the interstate network. 

Moving forward, several additional analyses could provide further insight as to 

correlate the crashes with a variety of factors. For example, a crash level analysis could be 

performed with the higher resolution speed data from INRIX. The speed measures before 

crash events could be compared to the regular periods to quantify how traffic conditions 

affect the occurrence of crashes. Moreover, separate analyses could be conducted for various 

collision types (i.e., head-on, rear-end, etc.). Also, this study focuses on the interstate 
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network, and future research efforts are warranted to assess how these findings can transfer 

to non-interstate highways. 
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